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The existence of special boundary
elementary problems characterized
The solutions of special boundary
closed form and this enables them
solutions of other boundary value
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value problems that are split into

by one boundary condition is proved.
value problems are constructed in

to be used as representations of
problems. Such representations result

in especially simple systems of integral relations since some of the
boundary conditions are taken into account in the representations
themselves. Dielectrics with simple anisotropy, and certain classes of
rhombic and monoclinic systems for which representations of solutions
and integral equations are obtained for certain classical boundary value
problems of electroelasticity are considered as examples.

In an anisotropic and homogeneous infinitely long cylinder with arbitrary cross-section
there exist a displacement field u and an electrical potential v that do not vary along
cylinder generator. We introduce a rectangular (;, %3, I3) coordinate system, directing
z; axis along the generator. We will then have u; = u;(r, 2),i=1,2,3 and v =v (1, L)
the displacement vector components and the potential.

The stress fields p;; and the electric displacements ¢; are determined by the following
system of relations in this case /1/:

let
the
the
for

2 3
by,= gl(IZ'l ctiklakul + Ckuakv) (i’ ]= 1’ 2' 3) (1)
2 3
q;= 12"1 (12‘1 CiniOxle; — cjkakv) (j=1,2,3)
where d; is the partial differentiation operator with respect to the Ix coordinate, and Cuki

¢jir Cj  are the elastic stiffness, piezoelectric constant, and permittivity of the material
respectively. They satify the symmetry relationships
Cpkl == Cogicts Cklaj == Cojkls  Cjtk == Cjklr  Cxj = Cjk 2)
Substitution of relations (1) into the equilibrium and electrostatics equations
2% 2
2 ajp1j=0 (l: 1-1 2y 3)' 2 0}Qj=0 (3)
=1 j=1
results in the fundamental system of coupled electroelasticity equations
3
Z L“ul + LMU :O, i= 1, 2, 3, 4 (4)
=1

2 2

Ly= 2 Cipx10,0% Lu=_ 2 cxj0x0;
Jy k=1 k=1

s

2

2
Ly= X cpddi (,1=1,2,3), Ly=— 2 cpdbx
Jr k==l i, B=1

» =2 3

It follows from (2) that Ly =Ly (i,1=1,2,3,4).
The solutions of these equations should takegiven values on the boundary of their domain
of definition, or forces p; or electric charge q

Py 2
pi= 21 pyny; (6=1,2,3), ¢=— ]2'1 my ®
~ =
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should be specified on the boundary, where (n,, n;) is the unit vector of the normal to the
boundary of the cylinder cross-section, directed along the section.

To determine the general solution of system (4) we introduce the resolving function .
by means of the formulas

4 4
U= 2 My v= 2 M 4 %s ©)
=1 =1

4
D LuMi,=8,L, L=det| Ly]

where M;, = M, are cofactors of the matrix || L;;|]l, and 0i; is the Kronecker delta.
Substituting relations (6) into system (4) we obtain that all ¥%s; should satisfy the
equation

8
Ly=0, L= ]I (a9, + 5.0y Q)

n=1

where L is an eighth-order homogeneous differential operator with constant coefficients and
partial derivatives in two variables z; and 7. Such an operator can always be expanded in
linear factors as shown above. The sum of the solutions of an equation of the form
(ad, + bdy) 3y, =0 8
will be the kernel of this operator.
The solution of each such equation has the form
x = Ref (z, + kz2) )
where f is an arbitrary analytic function of iz = z, + kz,.
To determine k, we substitute (9) directly into (7) and we then obtain an equation for k
which we call characteristic
1(k)=0 (10)
where the polynomial ! is obtained from L by replacing (4, ;) by (1, k).
We will consider here just the case of pairwise distinct roots of the characteristic
equation. Since this equation has real coefficients and corresponds to an even-order elliptic

operator, then four pairs of conjugate complex numbers k, = &, % if,;, Pn >0 will be its roots.
Therefore, the general solution of (7) can be represented in the form

4
%= Re glfn(zn)v Zn=1, + Kty ky=0n,+if, (11)

where only roots with positive imaginary part are taken, and f, are arbitrary analytic functions.
We will consequently have the following representation of the solutions (6)

u, =Re ilmz,(kn)fﬁ(zn), v=Re é_lm.,(km‘:.’(zn) (12)

where the polynomials my (k) are obtained from M), by replacing (d,,d) by (1, k), and f,, are
arbitrary analytic functions. Their number is not so large, as is indicated in (12), since
my, (kz) will not be linearly independent. Consequently, to obtain the final form of the
solutions (12), we proceed as follows. We consider the preceding reasoning to be the proof
that the general solution of system (4) can be sought at once in the form

4 4
u;=Re D) myugn(zs), v=Re D) Mgy (2n) (13)
n=1 n=1

To determine my, = m; (ks) we do not use system (4) but Egs.(3) by first determining Py
and g; from (1):

4

3
py=Re 3 (121 (Cist + CigiFon) Min + (€105 ++ Caijfin) Mn) €0 (14)

n=}

4 3
g;=Re 21 (121 (ni + Cparfen) Mun — (01 + Cafin) Men) €0’

We introduce the differential forms
pigs = pundxs — pidz,, qds = —q18%; + qdx,

obtained from (5) taking (n, ng) ds = (dx2, —dz;) into account, where ds is the differential
of the length of the contour of the transverse section domain. Calculating the external
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differential of these forms, we will have, by virtue of (3),
8 (pubxy — pudzy) = (ipy + Oapiz) dzy A day = 0
8 (—qydzs + gody) = — (1) + 8uge) day N\ dizp = O

By virtue of Poincaré's theorem it hence follows that there exist (at least locally) such
null-forms P; and ¢ that
pidS == dp‘ (i =1, 2, 3), qu B dQ ('15)

and moreover
Pi = 0Py, piz = —01P;y, g = —0, gz = ¢ (16)

Now we represent the functions P; and Q0 in the same form as u; and Wt
4 4
P.=Re 3\ Gingn(zn), Q=Re 3 0ungn (2) (7
where according to (15)

== §Pid$+c;, Q=§qd3 + ¢
&

3

are determined on the section boundary, apart from constants, and are the integral forces
and integral charge.
Subsituting (17) into {16) we obtain

4 4
pyn=Re ”Zl Ginkngn'y Pig=—Re n§1 Oinkn’ (18)

4 4
g,==— Re 2[ O‘,,k n+ Gs=Re S o,mg,.’
n=sl Tesd

Comparing (18) with {(14) we obtain (omitting the subscript n) the expressions

3
= t§1 (Cigur + Croark) My — (Cpys + con) My (19)
4
Oy == z§1 (ean + copk)m; — (cg + ek m,

as well as the additional relationships

3
Z_ASJ‘ (Cuat + cuak) My + (i + crnik) my == ko, (20)
a3

- IZ (e + exk)my + (cgy + ey k) my = ka,

el

Eliminating o; from (19) and (20), we arrive at a system of equations to determine k
and m;
3

D ey + (Cogar + o) & + Ciguik®my + (21)

fe==3

(crgi + {eggi + Co) b+ caib®my =0
3
- 1§1 {caut + (Crar + cq) b F oy my + (e + 2ok + ek my=0

The determinant of this system is the characteristic polynomial (10), and its vanishing
results in an equation for determining k. Subsequently, mi, = m; (k,) are determined from
system (21).

Going over to the boundary value problems, we note that by virtue of (15) it is formally
indistinguishable as to what is given on the boundary, piand g or P; and Q. It is more
convenient to specify £ and 0, since the nature of the boundary conditions for the desired
functions is the same in this case as when giving ¥ and v, and this enables to formulate the
following problem: formulate boundary conditions in the form of linear combinations of u;, Py,
v, @ such that the sclution of the boundary value problem reduces to a sequential solution
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of the boundary value problems for just one of the functions £, each time. 1In this case we
will say that the boundary value problem is solvable. If the boundary value problem allows

a separate solution of the boundary value problems for each function g, we will say that such
a problem is absolutely solvable. We still note that each of the functions £, has its domain
of definition that is obtained from the domain of the cylinder cross-section by the trans-
formation

1 a, x
e ey 2]

Theorem. If the roots of the characteristic Eq.(10) are pairwise distinct, then absolutely
solvable boundary value problems exist.

Proof. The systems of Egs.(19) and (20) can be written in the form of a single matrix
equation

(A -+ kBYW, W=col(my,...,mi 0., 0) (23)
Ay, E B,, 0
4=|“n , B= 1
Ay 0 B, E
iy Qs Gis G Cizg1 €233 Ciass Can
€1 Caus Cans Cns Caggy  Cazsa  Cazas Cao2
Ay = » By=

a1 Ssusz Csus Cia Casay  Cages  Casas Caes

= Cyy ~Cup —Cia Onn — Cygy ~Cg33 ~—Caas Cp2

where £ is the unit matrix. Only the matrices Az and B,, are of interest.

We will show that the determinants of the matrices A4 and B are different from zero, where
it is sufficient to show this for just one of them by virtue of relationships (23). As is well-
known /1/, the internal energy for dielectrics has the form

E=—;' 2 D&y t+ ‘;‘iqﬁl

i, juml 1=l

where 28;; = du; + G;ui, € = —0d) are the components of the strain tensor and electric intensity
vector. Since the internal energy is a positive-definite quadratic form for arbitrary (7]
and e;, then it also remains such in the case when e, = 0,25 = 0,8 =0 (g5 =0,e; =0, since
the problem is two-dimensional}. But then this form can be written as

1
E s o VBV >0, V=col(2e,, 5, 25, &) £ 0

It is now obvious that det B = det B;; >0 and it follows from (23) that k is an eigenvalue
of the matrix —B'A and satisfies the equation det{4 + kB) =0 which is the characteristic
Eq. (10).

Since the eigenvalues k, are pairwise distinct by the condition of the theorem, then the
natural columns

Wom=col (Mypy « . . Mgny Opmy -+ - 0n) (=1, 2,3, 4)

and their conjugates will be linearly independent.
We now represent the expressions for u,, P;,v,@ in the form

. ‘
D (Minln + Mindn) = 20, n§1 {Oinkn + Ounfn) = 2P;

fiow]

4 _— 4 em—
gx (Mnln + Mnln) = 2v, nzl {Ounfn + Ounln) = 20

and we consider them as a system of equations in g, and £.. The determinant of this system
differs from zero since it is the determinant of a matrix of linearly independent columns
Wa, W, (n=1,2,3,4) and, therefore, the system has a solution of g, and g,, or equivalently,
for Reg, and Img,.

We consider these solutions on the boundaries of the corresponding domains. Since the
boundary values of the real and imaginary parts of a function analytic in the domain cannot be
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arbitrary, we form linear combinations of them which we write in the form
3
en Re &n + Oy Im En = 21 (amut + bmpl) + Qngl + bn40
V=

where 0,, , are arbitrary piecewise-smooth functions of points of the domain boundary. In
sum, we arrive at four individual boundary value problems of the theory of functions of a
complex variable: to reproduce a function analytic in a domain by the boundary values of a
linear combination of its real and imaginary parts. The theorem is proved.

It is now clear from the proof of the theorem how solvable boundary value problems of
two~dimensional electroelasticity must be formulated. However, it is possible to proceed
differently by relying on the assertion of the theorem. We still form linear combinations
with determined coefficients.

3
Y, = jgl (@ijus + byyP)) + a,v + byQ

Then according to (13} and (17) we will have the following relationships on the boundary

4

41
Re 2!1 Win8n = ‘}rv Wy = 2! (aijmjn + bljojn)
n—

J=1

Now the matrices || e,;il and || b,;]] should be selected such that the matrix {| w,,|| will

become diagonal, - this for the case of absolute stability. In the case of simple solvability
it is sufficient to reduce the matrix ||w,|| to triangular form. Then much arbitrariness

remains in the matrices | a;;|| and Il 851l , and this broadens the class of solvable boundary
value problems; in particular, solvability of isotropic problems is possible /2/.

It will be seen from the examples presented below that not every boundary value problem
is solvable. In particular, the problem in which all the displacement components and the
electric potential are given is not solvable. However, the solutions obtained can be used as
representations of solutions of any other boundary value problems, for instance, just as is
done in /3/. We consequently arrive at a system of integral equations on the boundary of the
domain which are convenient in the sense that they contain not all the boundary functions as
unknowns but only some of them, since the rest, at least two boundary conditions, has already
been taken into account in the representation of the solution.

Example 1. We consider dielectrics of a class 2mm rhombic system (the z, axis is a
double axis of symmetry, two coordinate planes containing the z; axis, is a plane of symmetry).
In this case only @ijj» Cijuj» €ijs €111 C1sss Ca1ar Caaas C133s C3sps €230 Can be constants different from zero,
where the last three do not participate in the two-dimensional problem. System (21) takes
the form

(1311 T ek my + (enee + came)hmg + (e + eg1eh®)my = 0 {24)
(er12e + Crzmallmy + (cyz10 + Caanak®)my + (Cara + Crap)hmy = 0

5151 T Cazash® = 0

(a1 + ca1ak®my + (e + cradkmy — (e11 + Cook®)my = 0

The system decouples and k; k; are determined fromthe third equation. The determinant of
the remaining system has the form ! = %+ Lk + LA*+ 1, and K, k, ks and their conjugates are
detexrmined from the equation ¢ =0.

The form of the equation enables us to extract the case when all the roots of the equation
1=0 are pure imaginary, just as the third equation in (24). 1In this case we have two
separate systems of boundary conditions

2' (M Mgy szn) Reg, = (u1, v, Py)
L .

3 (imy,, i5,,018,,) Im g, = (us, P1, Q)
n

(the prime denotes that the number » =3 is omitted). It is possible to determine
Re g, = o ui + &, Pa+ o, v {25)
Img, =B, Pr+ Boous+ B, @ {26)

respectively, from the first and second system.
There is an individual boundary condition for u; and P;, and consequently, it will not be
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taken into account henceforth.

Separate boundary value problems are consequently obtained in which it is necessary to
restore the analytic function in the domain by means of its given real or imaginary part on
the boundary. We will represent the solutions of these problems in closed form.

Let the function z,=fn({s) map some standard domain of the complex plane, the upper half-
plane, say, into the domain of definition of the function .4, Then the solution of the
boundary value problem can be written by means of the Schwartz formula in the form

oo
1 S Gpgts + P+, v

A LGy T @

or

©

1 ¢ ByyPiFBuuat$,,0
W )

&t o 28)

where ui, Pi, v, Q@ are given as functions of the coordinate & = fn™'(z), and (23) = zn1 + i¥ne belongs
to the boundary of the domain of definition of é&n.

Substituting (27) and (28) into (13), we obtain representations of the solutions of the
boundary value problems in this case for dielectrics of the given class.

Let us examine the boundary value problem in which displacement components and the electric
potential are given. If (27) is selected as the representation of the solution, then it
remains just to consider the boundary condition for u,. From (13) we have the representation
(ug = V)

4 o0
m a i+ o P4 a v
u,=Re } ' In S Zm T Fng 2T Fng? -
y=Be )12 B L () Bt (=124 (29
n=l —o0

Transferring z» on the boundary of the domain into the equation for j =2, agcording to
the Sokhotskii-Plemelj formulas, we obtain an integral equation for the unknown boundary
function in this case, the integral force P,

4 ©©
Re Ym0 tmaw% S T’;’f—g"(%drn] =R(Y) (30)
n=s] —x
4 ’
R(E) = uz () -—Rez ™y, [mmu1 )+, (B)+
n=1
1 ¢ el () Fap(ee,)
™ S T — 5, (B)

drn-‘ — 2

—00

The dependence &n=E,(f) is determined from the relationship f, (En) = Anf (§) where the
function z=/({) maps the deformed domain onto the upper half-plane 1>0, {=§+ in.

Example 2. In the class 002 of a monoclinic system (the z; axis is the axis of double
symmetry( the constraints ctiss, Ciis1r C1saar Cuasly C1jjs C1az: C2jfs Cass Coaass Cstr Oy, €y equal zero, and system
(21) splits into two independent systems

(e + 2enuak + exgiak®)my + (cpns + (brrne + )k + Cranakt)my = @ (31)
(eras + (Crsss + Crara)k + C1agak®my + (Craas + 261909k + Caanah®)my = 0
(catar + 263135k -+ Capaak®Ims - (cuts + (Cras + capa)k + cqask®)my = 0 (32)

(c1s + (c1zs -+ caaak) + cagsh®)my — (c1g + 2e19k + coh®)my =0

Hence it follows from (19) that

03 = —(c1a1 + ctaukImy — (C1a1g + Cramk)ms (33)
0y = —(caan  Commk)my — (Cama + Cranak)my
Oy = —(camas + camak)ms — (133 + caask)my (34)

G¢ = (ca1a + Caaak)ms — (ea1 + cask)my

Equating the determinants of systems (31) and (32) to zero we obtain two characteristic
equations whose roots are ky, k., K, ks and kg, ki, %5, By, respectively.

It is seen that the problem splits into two; one is described in the boundary value
terminology u,, uy, P;, Py and the other in the terminology us P v, Q. A special case of the
first problem (ejy1s = c1ee = 0) was considered in /3, 4/. We examine here only the second
problem, where for simplicity we set Cuiss Cisn Saasn Cus Cusr €33 €13 equal to zero, corresponding
to a dielectric of class 422. 1In this case the characteristic equation has only pure imagin-
ary roots.
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Determining m; and ¢ from (32) and (34), we obtain two systems of boundary conditions
for gnt one is expressed in terms of u; and @ and the other in terms of P; and v. We consider
only the first. 1In this case the solution has the form

Re g, = {~1)" [us -+ c3e7h (on -+ enk_) QUA
A == ggp (ke? — ko)

and, as before, g» is restored in the domain.
In order to examine other boundary value problems, we present a representation of the
remaining functions. From (13} and (17) we obtain

4

_—_ReZ.(:.;.G.)f

na=F

-
Jsn

m

hd -~ 2
Py S ug 4 0111‘:3%3 fen+ Czak;..n}Q
v

g+ €
BBy — L, (2,0 N

ang v

Now, if the displacement and electrical potential » are given on the boundary, then
according to the Sokhotskii-Plemelj formulas we obtain the following integral equation for Q:

dr, = R{€) @5

S (o ekl Immy, ¢ Q(3(T,)
Ll il _5 T, 8, (8)
4

- Immneo ug (T (%,,)} =
R(E)wv(ﬁ)wZ 5:{4 S ‘n"ann{i) dr, ¢

ne=l

We consider a specific example for the second problem. Let the domain of the cylindrical
body section be the exterior of a parabola y > 4a?{z- 4%, and a the parameter of the parabola
{2y == z, 2z, =y} and the displacement u#; and the potential v given on the domain boundary, where
ug {o0) == b {00) = 0.

The roots of the characteristic equation of the system (32) have the form kn= ifia Ba >0
{(n=13,4 and mg = ¢y — cuPn’, M = icguPn 1S a solution of this system.

The transformations sz, = 4xz{n==3,4) or =z, =17z,yn= Py map this domain into the domain
¥n® > 4Ba%a® (zn + a¥).

The functions mapping the half-plane conformally inte the transformed domains, will have
the form

g, =B 3( 2420 ) —a® [ = m,
and in particular, for fa=1, we obtain a mapping of the half-plane into a given section
domain such that by virtue of the relationship 2. ==4as we will have &= Pa"f on the section
boundary. This last circumstance makes the kernel of the integrals in (35) similar (%n ~ &n
Bt = Bp (x — &, which enables us to solve (35) by inverting the Cauchy operator. We
consequently find

Q€)= —enwus @) + ot P {202

and the problem is solved.
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