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REPRESENTATIONS OF THE SOLUTIONS OF TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS 
OF COUPLED ELECTROELASTICITY* 

V.A. SDACHNRV 

In an anisotropic and homogeneous infinitely long cylinder with arbitrary cross-section 

The existence of special boundary value problems that are split into 
elementary problems characterized by one boundary condition is proved. 
The solutions of special boundary value problems are constructed in 
closed form and this enables them to be used as representations of 
solutions of other boundary value problems. Such representations result 
in especially simple systems of integral relations since some of the 
boundary conditions are taken into account in the representations 
themselves. Dielectrics with simple anisotropy, and certain classes of 
rhombic and monoclinic systems for which representations of solutions 
and integral equations are obtained for certain classical boundary value 
problems of electroelasticity are considered as examples. 

let there exist a displacement field u and an electrical potential v that do not vary along 
the cylinder generator. We introduce a rectangular (X~.XZ,SQ) coordinate system, directing 
the x3 axis along the generator. We will then have ui = ui (ti, Q), i = 1, 2, 3 and v = v (xl, ~2) 

for the displacement vector components and the potential. 
The stress fields pij and the electric displacements qj are determined by the following 

system of relations in this case /l/: 

where & is the partial differentiation operator with respect to the xk coordinate, and Ctjklt 

cikl, cjk are the elastic stiffness, piezoelectric constant, and permittivity of the material 

respectively. They satify the symmetry relationships 

Cjtkl = C,jkl? ckltj= Ctjklr Cjlk = cjklt ckj = Cjk 

Substitution of relations (1) into the equilibrium and electrostatics equations 

(2) 

e ajp,j=O (i=l, 2, 3), i; ag,=o 
j=l j=l 

results in the fundamental system of coupled electroelasticity equations 

(3) 

j1 L& + L,,v = 0, i = 1, 2, 3, 4 (4) 
2 a 

Lil = j 8, cijkLa$k, Lid =j 8, cklrakaj 

L,l= ,B, c,kla$k (i, i = 1, 27 3)v L,, = -j $I=, c]ka#k 

It follows from (2) that &I = .& (i, 1 = 1,2,3,4). 
The solutions of these equations shouldtakegiven values on the boundary of their domain 

of definition, or forces pi or electric charge q 

a 
Pi= X Pijnj Ci= 19 2, 3)Y (5) 

j=l 
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should be specified on the boundary, where (n,,nz) is the unit vector of the normal to the 
boundary of the cylinder cross-section, directed along the section. 

To determine the general soldtion of system (4) we introduce the resolving function x. 
by means of the formulas 

li ~~~~~~ = 6,,L, L = det II LQ II 

where MI, = M,I are cofactors of the matrix 11 Li,jI, and 6is is the Kronecker delta. 
Substituting relations (6) into system (4) we obtain that all xs should satisfy the 

equation 

Lx=O, L = fi (a,& + b&Q (7) 
n=1 

where L is an eighth-orderhomogeneous differential operator with constant coefficients and 
partial derivatives in two variables qand 4. Such an operator can always be expanded in 
linear factors as shown above. The sum of the solutions of an equation of the form 

(aa, + b32) x = CJ (8) 

will be the kernel of this operator. 
The solution of each such equation has the form 

x = Ref (x1 + ksz) (9) 

where f is an arbitrary analytic function of z = x1 + ksz. 
Tu determine k, we substitute (9) directly into (7) and we then obtain an equation for k 

which we call characteristic 

I (k) = 0 (10) 
where the polynomial 1 is obtained from L by replacing (a,,&) by (I,& 

We will consider here just the case of pairwise distinct roots of the characteristic 
equation. Since this equation has real coefficients and corresponds to an even-order elliptic 
operator, then four pairs of conjugate complex numbers k, = a,-+ ifi,,, fln>O will be its roots. 
Therefore, the general solution of (7) can be represented in the form 

where only roots with positive imaginary part are taken , and fn arearbitraryanalytic functions. 
We will consequently have the following representation of the solutions (6) 

where the polynomials ml,(k) are obtained from MI, by replacing (a,,&) by (1, k), and f, are 
arbitrary analytic functions. Their number is not so large, as is indicated in (12), since 
ml,(kn) will not be linearly independent. Consequently, to obtain the final form of the 
solutions (121, we proceed as follows. We consider the preceding reasoning to be the proof 
that the general solution of system (4) can be sought at once in the form 

To determine ml, = ml(&) we do not use system (4) but Eqs.(3) by 
and q1 from (1): 

Pu = Re $ (I!1 (Cinr -I- c&J ml,, + h) + %$n) 7%) gn’ 

qJ = Re iI ($% (Cfii + C&s) ml, - (c, + c&n) %n) gn’ 

We introduce the differential forms 

p,ds = PiI& - Pi&,, qds = -q1&2 + q&1 

obtained from (5) taking (n,,nz)ds = (dzz, -dq) into account, where ds 

(13) 

first determining PiJ 

(14) 

is the differential 
of the length ofthecontour of the transverse section domain. Calculating the external 



518 

differential of these forms, we will have, by virtue of (3), 

f? (P&z - P&,) = (&Pi, + dzI4z) dx, /j dxz = 0 

3 (--P&2 i- %.cW = - (d,q, i- &JZ)dX~ i\ d.Q = 0 

By virtue of Poincar&'s theorem it hence follows that there exist (at least locally) such 
null-forms piand Q that 

p&s = dP$ (i = 1,2,3), qds = dQ (15) 

and moreover 

Pi1 = &pi, P~z = -&pi, (II = -&Qt 9~ = &Q 

Now we represent the functions Pi and Q in the same form as ~1 and U: 

where according to (15) 

Pi= ipids + c,, 
4 

Q=(qds -i-c 

are determined on the 
and integral charge. 

section boundary, apart from constants , and are the integral forces 

Subsituting (17) into (16) we obtain 

Comparing (18) with (14) we obtain (omitting the subscript n) the expressions 

oz = - l$ (%t + cia&)ml - fcus + c&)m, 

as well as the additional relationships 

(19) 

Eliminating st from (19) and (20), we arrive at a system of equations to determine k 
and rni 

The determinant of this system is the characteristic polynomial (lo), and its vanishing 
results in an equation for determining k. Subsequently, mi, = mi(k,,) are determined from 
system (21). 

Going over to the boundary value problems, we note that by virtue of (15) it is formally 
indistinguishable as to what is given on the boundary, piand q or Pi and Q. It is more 
convenient to specifypi and Q, since the nature of the boundary conditions for the desired 
functions is the same in this case as when giving & and 0, and this enables to formulate the 
following problem: formulate boundary conditions in the form of linear combinations of z&Pi, 
v, Q such that the solution of the boundary value problem reduces to a sequential solution 
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of the boundary value problems for just one of the functions g, each time. In this case we 
will say that the boundary value problem is solvable. If the boundary value problem allows 
a separate solution of the boundary value problems for each function &, we will say that such 
a problem is absolutely solvable. -We stili note that each of the functions g,, has-its domain 

cylinder cross-section by the trsne- of definition 
formation 

Theorem. If the rocts of the characteristic Eq.(lO) are pairwise distinct, then absolutely 

that is obtained from the domain of the 

solvable boundary value problems exist. 

Proof. The systems of Eqs.(lg) and (20) can be written in the form of a single matrix 
equation 

(A -I- kB) W, W = cd (ml, . . ., m,, bl, , . ., $) (23) 

I 

Cl111 Cl111 %a Cl11 

A,, = ::::: 
Cl112 cam Cl12 

Call2 calls 41r 
‘ B,,= 

- %I - Cl11 - %a Cl1 

ClllSl Cl222 Cllaa Cl21 

Cl291 C22¶2 ha C22t 

%22l Ca222 ha Cl23 

- Ca*t - C222 -ha %2 

where E is the unit matrix. Cnly the matrices Azt and B1, are of interest. 
We will show that the determinants of the matrices A and B are different from zero, where 

it is sufficient to show this for justoneof them by virtue of relationships (23). As is well- 
known /l/, the internal energy for dielectrics has the form 

where 2.511 = &UI + 81~~ et = --($V are the components of the strain tensor and electric intensity 
vector. Since the internal energy is a positive-definite quadratic form for arbitrary et) 
and et, then it also remains such in the case when e,,= O,eal= 0, e, =O (eas = 0,e3 = 0, since 
the problem is two-dimensional). But then this form can be written as 

It is now 
of the matrix 
Eq.(lO). 

Since the 

E= + VT&I7 >O, V =coI(2+, eel 2ep,a+ e&f0 

obvious that detB = det B,, > 0 and it follows from (23) that k is an eigenvalue 
--B'A and satisfies the equation det (A + kB)= 0 which is the characteristic 

eigenvalues k, are pairwise distinct by the condition of the theorem, then the 
natural colUnns 

W, = co1 (m,,, . . . man, uln, . . . a,,) (n = 1, 2, 3, 4) 

and their conjugates will be linearly independent. 
We now represent the expressions for u,, Pi-v, Q in the form 

and we consider them as a system of equations in g,, and g,. The determinant of this system 
differs from zero since it is the determinant of a matrix of linearly independent columns 
w,, w, (a = i, 2,374) and, therefore, the system has a solution of g,, and g,, or equivalently, 
for Reg, and Img,,. 

We consider these solutions on the boundaries of the corresponding domains. Since the 
boundary values of the real and imaginary parts of a function analytic in the domain cannot be 
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arbitrary, we form linear combinations of them which we write in the form 

where 8,, 0, are arbitrary piecewise-smooth functions of points of the domain boundary. In 

SumI we arrive at four individual boundary value problems of the theory of functions of a 
complex variable: to reproduce a function analytic in a domain by the boundary values of a 
linear combination of its real and imaginary parts. The theorem is proved. 

It is now clear from the proof of the theorem how solvable boundary value problems of 
two-dimensional electroelasticity must be formulated. However, it is possible to proceed 
differently by relying on the assertion of the theorem. We still form linear combinations 
with determined coefficients. 

Then according to (13) and (17) we will have the following relationships on the boundary 

Now the matrices IIa,jll and 11 b,j(I should be selected such that the matrix ))uj,,II will 

become diagonal, - this for the case of absolute stability. In the case of simple solvability 
it is sufficient to reduce the matrix 11 w,,II to triangular form. Then much arbitrariness 

remains in the matrices 11 aijII and II bij II t and this broadens the class of solvable boundary 
value problems; in particular, solvability of isotropic problems is possible /Z/. 

It will be seen from the examples presented below that not every boundary value problem 
is solvable. In particular, the problem in which all the displacement components and the 
electric potential are given is not solvable. However, the solutions obtained can be used as 
representations of solutions of any other boundary value problems, for instance, just as is 
done in /3/. We consequently arrive at a system of integral equations on the boundary of the 
domain which are convenient in the sense that they contain not all the boundary functions as 
unknowns but only some of them, since the rest, at least two boundary conditions, has already 
been taken into account in the representation of the solution. 

Example 1. We consider dielectrics of a class 2mm rhombic system (the x1 axis is a 
double axis of symmetry, two coordinate planes containing the z1 axis, is a plane of symmetry). 
In this Case Only Caiij, CiJrft Cijs Cmr Cm, Cam Cam %a cm. %a~. can be constants different from zero, 
where the last three do not participate in the two-dimensional problem. System (21) takes 
the form 

(24) 

The system decouples and k,, E, are determined fromthe third equation. The determinant of 
the remaining system has the form I= W-b Wi- W+b and k,, k,, k, and their conjugates are 
determined fromtheequation l=O. 

The form of the equation enables us to extract the case when all the roots of the equation 
1=0 are pure imaginary, just as the third equation in (24). In this case we have two 
separate systems of boundary conditions 

z’ (im,,, is,,, man) Im gn = (h, PI, Q) 

(the prime denotes that the number n= 3 is omitted). It is possible to determine 

Reg, =a,lul+a,,Pa+ a*" i25) 

Ial&= B,&+- B,,ur+ s,p 426) 

respectively, from the first and second system. 
There is an individual boundary condition for pII and P,, and consequently, it will not be 
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taken into account henceforth. 
Separate boundary value problems are consequently obtained in which it is necessary to 

restore the analytic function in the domain by means of its given real or imaginary part on 
the boundary. We will represent the solutions of these problems in closed form. 

Let the function z,=f,,(Ln) map some standard domain of the complex plane, the upper ha 

plane, say, into the domain of definition of the function 's,,. Then the solution of the 
boundary value problem can be written by means of the Schwartz formula in the form 

or 

&(Z") = f 
" B,,PI+ B,,~a+B,,Q 

s q&-c., (2,) 
de,+ c, 

-m 

lf- 

(27) 

(28) 

where u*, Pi,u,Q are given as functions of the coordinate En =fn-'(z,J,and (a)= +nl+ izna belongs 
to the boundary of the domain of definition of .GL. 

Substituting (27) and (28) into (131, we obtain representations of the solutions of the 
boundary value problems in this case for dielectrics of the given class. 

bet us examine the boundary value problem in which displacementcomponentsandtheelectric 
potential are given. If (27) is selected as the representation of the solution, then it 
remains just to consider the boundary condition for u,. From (13) we have the representation 
(u4 = VI 

(29) 

Transferring z, on the boundary of the domain into the equation for i = 2, according to 
the Sokhotskii-Plemelj formulas, we obtain an integral equation for the unknown boundary 
function in this case, the integral force P, 

The dependence En= E.,,(E) is determined from the relationship j,,(&,)- A&(&) where the 
function s=f(6) maps the deformed domain onto the upper half-plane q>O, E= &+ iq. 

Example 2. In the class 002 of a monoclinic system (the z II axis is the axis of double 
symmetry( the constraints Cilaa* Cifslt CUM* Clfat~ CIJJ~ Cm* %JJ. Cam Cas4~ %sfr 48, cd equal zero, and system 
(21) splits into two independent systems 

(34) 

(32) 

Hence it follows from (19) that 

4 = -(Q,u + ci,&)m, - (CM, + ct,&)m, 
%= -(c,,u+ c-k)%-(c,,+ can&m, 

c., = -(%ur+ %,A% - (clrt + c,,'+, 
0, = (cUI + %&)m, - (cu -I- c&m4 

Equating the determinants of systems (31) and (32) to zero we 
equations whose roots are kI,k,,&,,E, and k,, k,, P,, x4, respectively. 

It is seen that the problem splits into two; one is described 

(33) 

(34) 

obtain two characteristic 

in the boundary value 
terminology ul. u,, PI, R, and the other in the terminology u,, PI, v, Q. A special case of the 
first problem (clll, = C, = 0) was considered in /3, 4/. We examine here only the second 
problem, where for simplicity we set en-,, CUM %~MI, ena~ %*a~ %MVCM equal to zero, corresponding 
to a dielectric of class 422. In this case the characteristic equation has only pure imagin- 
ary roots. 
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Determining mi and ei from (32) and (34), we obtain two systems of boundary conditions 
for g,: one is expressed in terms of u1 and Q and the other in terms of Ps and v. We consider 
only the first. In this case the solution has the form 

Re g, == (-0" [~a % c;:c~~~:,(~~~i_cark:_,)PljA 
A = ~22 (ka* - k2) 

and, as before, g,, is restored in the domain. 
In order to examine other boundary value problems, we present a representation of the 

remaining functions. From (13) and (17) we obtain 

Now, if the displacement and electrical potential u are given on the boundary, then 
according to the Sokhotskii-Plemelj formulas we obtain the following integral equation for P: 

We consider a specific example for the second problem. Let the domain of the cylindrical 
body section be the exterior of a parabola y>4aa(s% a*), and a the parameter of the parabola 
(31 = 2, z, = 60 and the displacement uQ and the potential v given on the domain boundary, where 
tl,(co)=D(oo)=O. 

The roots of the characteristic equation of the system (32) have the form .&= i& fin >O 
(n = 3, 4) and msR = ctl - &LsI mtn = &&I is a solution of this system. 

The transformations an ==A,z(n=3,4) or ~,=r,g~=j&F map this domain into the domain 
F*' > 4&&" (.Q + aa). 

The functions mapping the half-plane conformally into the transformed domains, will have 
the form 

z,=B,*K,:i-Q+Q-a? 6,=5,%trl, 

and in particular, for &= i, we obtain a mapping of the half-plane into a given section 
domain such that by virtue of the relationship a,=&~ we will have &,= #L-l& on the section 
boundary. This last circumstance makes the kernel of the integrals in (35) similar (G -5% 
(Of-r - Bn (7 - B-r* which enables us to solve (35) by inverting the Cauchy operator. We 
consequently find 

and the problem is solved. 
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